Bound states contribution to the polarizability of hydrogen

The polarizability α of hydrogen (with spin ignored) is given by the following expression (eq. 5.1.68 in Sakurai \& Napolitano with $E_{1}=-e^{2} /\left(2 a_{0}\right)$ and $\left.E_{n}=E_{1} / n^{2}\right)$

$$
\begin{equation*}
\alpha=4 a_{0} \sum_{n=2}^{\infty} \frac{\left.\left|\left\langle n p_{0}\right| z\right| 1 s\right\rangle\left.\right|^{2}}{1-n^{-2}}+\text { contribution from continuum states } . \tag{1}
\end{equation*}
$$

We want to compute the matrix elements $\left\langle n p_{0}\right| z|1 s\rangle$ and then sum the series.

1 Wave functions

The wave functions of the hydrogen atom are

$$
\begin{equation*}
\psi_{n l m}=R_{n l}(r) Y_{l m}(\theta, \phi), \tag{1}
\end{equation*}
$$

where the radial wave functions are

$$
\begin{equation*}
R_{n l}(r)=\frac{2}{n^{2} a_{0}^{3 / 2}} \sqrt{\frac{(n-l-1)!}{(n+l)!}} e^{-\rho / 2} \rho^{l} L_{n-l-1}^{2 l+1}(\rho) \tag{2}
\end{equation*}
$$

where $\rho=(2 r) /\left(n a_{0}\right)$ and a_{0} is the Bohr radius. In this formula, the associated Laguerre polynomials $L_{n}^{m}(x)$ are normalized as in Mathematica, Abramowitz \& Stegun, and Gradshteyn \& Ryzhik, while Griffiths uses the normalization $\left.L_{n}^{m}(x)\right|_{\text {Griffiths }}=(n+m)!L_{n}^{m}(x)$, and Sakurai, Sakurai \& Napolitano, Landau \& Lifshitz use the normalization $\left.L_{n}^{m}(x)\right|_{\text {Landau }}=(-1)^{m} n!L_{n-m}^{m}(x)$.

2 Matrix elements

We have

$$
\begin{align*}
\left\langle n p_{0}\right| z|1 s\rangle & =\langle n 10| z|100\rangle \tag{1}\\
& =\int d r r^{2} d \Omega \psi_{n 10}^{*}(r, \theta, \phi) z \psi_{100}(r, \theta, \phi) \tag{2}\\
& =\int d r r^{2} d \Omega R_{n 1}(r) Y_{10}^{*}(\theta, \phi) z R_{10}(r) Y_{00}(\theta, \phi) \tag{3}\\
& =\int d r r^{3} d \Omega Y_{10}^{*}(\theta, \phi) \sqrt{\frac{4 \pi}{3}} Y_{10}(\theta, \phi) R_{10}(r) \frac{1}{\sqrt{4 \pi}} \tag{4}\\
& =\frac{1}{\sqrt{3}} \int d r r^{3} d \Omega R_{n 1}(r) Y_{10}^{*}(\theta, \phi) Y_{10}(\theta, \phi) R_{10}(r) \tag{5}\\
& =\frac{1}{\sqrt{3}} \int_{0}^{\infty} d r r^{3} R_{n 1}(r) R_{10}(r) . \tag{6}
\end{align*}
$$

We now pass to dimensionless form by defining x and $\tilde{R}_{n l}(x)$ as

$$
\begin{align*}
& r=x a_{0}, \tag{7}\\
& R_{n l}(r)=a_{0}^{-3 / 2} \widetilde{R}_{n l}(x) . \tag{8}
\end{align*}
$$

Then

$$
\begin{equation*}
\left\langle n p_{0}\right| z|1 s\rangle=a_{0} b_{n} \tag{9}
\end{equation*}
$$

with

$$
\begin{equation*}
b_{n}=\frac{1}{\sqrt{3}} \int_{0}^{\infty} d x x^{3} \widetilde{R}_{n 1}(x) \widetilde{R}_{10}(x) \tag{10}
\end{equation*}
$$

We evaluate b_{n}.
From Eq. (2) we compute

$$
\begin{align*}
& \widetilde{R}_{10}(x)=2 e^{-x} \tag{11}\\
& \widetilde{R}_{n 1}(x)=\frac{4}{\sqrt{n^{7}\left(n^{2}-1\right)}} e^{-x / n} x L_{n-2}^{3}\left(\frac{2 x}{n}\right) . \tag{12}
\end{align*}
$$

Then

$$
\begin{equation*}
b_{n}=\frac{8}{\sqrt{3 n^{7}\left(n^{2}-1\right)}} \int_{0}^{\infty} e^{-\left(1+\frac{1}{n}\right) x} x^{4} L_{n-2}^{3}\left(\frac{2 x}{n}\right) d x \tag{13}
\end{equation*}
$$

and with $x=n t / 2$,

$$
\begin{equation*}
=\frac{1}{4 \sqrt{3}} \sqrt{\frac{n^{3}}{n^{2}-1}} \int_{0}^{\infty} e^{-(n+1) t / 2} t^{4} L_{n-2}^{3}(t) d t . \tag{14}
\end{equation*}
$$

Now, formula 7.424.7 in Gradshteyn and Ryzhik gives

$$
\begin{equation*}
\int_{0}^{\infty} e^{-s t} t^{\beta} L_{n}^{\alpha}(t)=\frac{\Gamma(\beta+1) \Gamma(\alpha+n+1)}{n!\Gamma(\alpha+1)} s^{-\beta-1} F\left(-n, \beta+1 ; \alpha+1 ; s^{-1}\right), \tag{15}
\end{equation*}
$$

valid for $\operatorname{Re} \beta>-1$, Re $s>0$. Identifying $s \rightarrow(n+1) / 2, \beta \rightarrow 4, n \rightarrow n-2, \alpha \rightarrow 3$, we find

$$
\begin{equation*}
\int_{0}^{\infty} e^{-(n+1) t / 2} t^{4} L_{n-2}^{3}(t) d t=64 n^{2}(n-1)^{n-2}(n+1)^{-n-2} \tag{16}
\end{equation*}
$$

Finally

$$
\begin{equation*}
b_{n}=\frac{16 n}{\sqrt{3}}\left(\frac{n}{n^{2}-1}\right)^{5 / 2}\left(\frac{n-1}{n+1}\right)^{n} \tag{17}
\end{equation*}
$$

Some values are

$$
\begin{equation*}
b_{2}=\sqrt{2} \frac{2^{7}}{3^{5}}, \quad b_{3}=\sqrt{2} \frac{3^{3}}{2^{7}}, \quad b_{4}=\sqrt{5} \frac{2^{11} 3}{5^{7}}, \quad b_{5}=\sqrt{10} \frac{25^{3}}{3^{8}} . \tag{18}
\end{equation*}
$$

3 Summation over bound states

We have

$$
\begin{equation*}
\alpha=c a_{0}^{3} \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
c=4 \sum_{n=2}^{\infty} \frac{b_{n}^{2}}{1-n^{-2}}+\text { contribution from continuum states } . \tag{2}
\end{equation*}
$$

Including only the contribution from bound states, we want to evaluate

$$
\begin{equation*}
c=\sum_{n=2}^{\infty} c_{n} \quad \text { with } \quad c_{n}=\frac{4 b_{n}^{2}}{1-n^{-2}} \tag{3}
\end{equation*}
$$

This series converges because at large n, we have $b_{n} \sim n^{-3 / 2}$ and $c_{n} \sim n^{-3}$. To evaluate the sum, we add the first K terms and approximate the sum of the others with an Euler-Maclaurin series (dropping the derivative terms),

$$
\begin{equation*}
c \simeq \sum_{n=2}^{K} c_{n}+\frac{c_{K}}{2}+\int_{K}^{\infty} c_{n} d n \tag{4}
\end{equation*}
$$

With $K=10$, this gives

$$
\begin{equation*}
c=3.66309 \tag{5}
\end{equation*}
$$

Thus we find

$$
\begin{equation*}
\alpha=3.66309 a_{0}^{3} \tag{6}
\end{equation*}
$$

for the bound state contribution to the polarizability of a hydrogen atom in the ground state.

References

Abramowitz, M. \& Stegun, I.A. Handbook of Mathematical Functions (National Bureau of Standards, 10th ed., 1972).
Gradshteyn, I.S. \& Ryzhik, I.M. Table of Integrals, Series, and Products (Academic Press, 7th ed., 2007).
Griffiths, D.J. Introduction to Quantum Mechanics (Prentice Hall, 1995).
Landau, L.D. \& Lifshitz, E.M. Quantum Mechanics: Non-Relativistic Theory (Pergamon Press, 3rd ed.,1977).
Sakurai, J.J. Modern Quantum Mechanics (Addison-Wesley, Revised ed., 1994).
Sakurai, J.J. \& Napolitano, J. Modern Quantum Mechanics (Addison-Wesley, 2nd ed., 2010).

