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Continuum wave functions

1 Normalization

1.1 Basics

The most basic implementation of the normalization of continuum eigenfunctions is as follows. Let an
observable Â have discrete eigenvalues an and continuum eigenvalues a, with respective eigenfunctions
ψn(r) and ψa(r). An arbitrary wave function ψ(r) can be expanded as

ψ(r) =
∑
n

cn ψn(r) +

∫
ca ψa(r) da, (1)

where the sum is taken over the discrete spectrum and the integral over the continuous spectrum. in Dirac
notation,

|ψ〉 =
∑
n

cn |ψn〉+

∫
da ca |ψa〉. (2)

Since the sum of the probability of all possible values of A must be equal to one, we have∑
n

|cn|2 +

∫
|ca|2 da = 1. (3)

We can obtain the coefficients from the wave function by means of

cn = 〈ψn|ψ〉 ≡
∫
ψ∗n(r)ψ(r) d3r, (4)

ca = 〈ψa|ψ〉 ≡
∫
ψ∗a(r)ψ(r) d3r. (5)

The normalization conditions are

〈ψn′ |ψn〉 ≡
∫
ψ∗n′(r)ψn(r) d3r = δn′n, (6)

〈ψn′ |ψa〉 ≡
∫
ψ∗n′(r)ψa(r) d3r = 0, (7)

〈ψa′ |ψa〉 ≡
∫
ψ∗a′(r)ψa(r) d3r = δ(a′ − a). (8)

One expresses the last normalization condition by saying that the continuum eigenfunctions are normal-
ized on the a scale. The continuum eigenfunctions are orthogonal to the discrete eigenfunctions. The
completeness relation is ∑

n

ψn(r)ψ∗n(r′) +

∫
ψa(r)ψ∗a(r

′) da = δ(r′ − r). (9)

In Dirac notation, ∑
n

|ψn〉 〈ψn|+
∫
da |ψa〉 〈ψa| = 1. (10)
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The expectation value of each operator in the left hand side on a state |ψ〉 gives the probability of having
the respective eigenvalue in state |ψ〉. Thus the probability to have eigenvalue an in state |ψ〉 is

Prob(an;ψ) = 〈ψ|ψn〉 〈ψn|ψ〉 = |〈ψn|ψ〉|2, (11)

and the probability to have eigenvalue in the range (a, a+ da) is

Prob(a;ψ) = 〈ψ|ψa〉 〈ψa|ψ〉 da = |〈ψa|ψ〉|2 da. (12)

The completeness relation can be taken as the basic relation from which the other normalization conditions
can be derived. For example, multiply Eq. (10) by 〈ψa′ | to obtain∫

da 〈ψa′ |ψa〉 〈ψa| = 〈ψa′ |, (13)

from which

〈ψa′ |ψa〉 = δ(a′ − a) (14)

follows.

1.2 Other normalizations

The continuum eigenfunctions can also be parametrized by a variable α related to the eigenvalue a in a
one-to-one manner. For example, using the energy in place of the magnitude of the momentum, or the wave
number in place of the momentum. In this case, one wants to change the integration in da to an integration
in dα. At the same time one may or may not change the normalization of the continuum eigenfunctions.
There is often ambiguity of notation. The fundamental relation that must not change is the completeness
relation (10). One must have, for example,∫

da |ψa〉 〈ψa| =
∫
dα

da

dα
|ψa(α)〉 〈ψa(α)|, (15)

where |ψa(α)〉 = |ψa〉 denotes the continuum eigenfunction |ψa〉 (no change in normalization) with the
eigenvalue a expressed in terms of the parameter α. One can split the term da/dα into a factor µα attached
to the integration measure µα dα, and a (real-valued) factor Nα that changes the normalization of the
continuum eigenfunctions. Thus

da

dα
= µαNα, (16)

|ψα〉 =
√
Nα |ψa(α)〉, (17)∫

da |ψa〉 〈ψa| =
∫
dαµα |ψα〉 〈ψα|. (18)

The following relations follow. ∑
n

|ψn〉 〈ψn|+
∫
dαµα |ψα〉 〈ψα| = 1, (19)

〈ψα′ |ψα〉 =
1

µα
δ(α′ − α), (20)

|ψ〉 =
∑
n

cn |ψn〉+

∫
dαµα cα |ψα〉. (21)

cα = 〈ψα|ψ〉. (22)
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From the completeness relation in Eq. (19), one obtains the probability to have eigenvalue an in state |ψ〉
as

Prob(an;ψ) = 〈ψ|ψn〉 〈ψn|ψ〉 = |〈ψn|ψ〉|2, (23)

and the probability that the parameter α is in the range (α, α+ dα) as

Prob(α;ψ) = 〈ψ|ψα〉 〈ψα|ψ〉µα dα = |〈ψα|ψ〉|2 µα dα. (24)

If µα = 1, one says that the eigenfunctions |ψα〉 are normalized on the α scale, 〈ψα′ |ψα〉 = δ(α′ − α). The
most common normalizations use the momentum scale, the wave number scale (also called the k scale), the
reduced wave number scale (called the k/2π scale), and the energy scale.

2 Normalization by means of the asymptotic form

Given some unnormalized continuum eigenfunctions Xα(r), it may be rather complicated to compute the
normalization integral ∫

X∗α′(r)Xα(r) d3r. (1)

In one-dimensional problems and in problems with central potentials, the following method is available
for normalizing continuum eigenfunctions that behave sinusoidally at large distances directly from their
asymptotic expression at large values of R = |r| (Landau–Lifshitz, section 21).

The normalization integral diverges as R→∞, and to find the normalization constant one can replace
Xα(r) by its asymptotic form at large R, and perform the integration in r taking as lower limit any finite
value of r, say zero. This amounts to neglecting a finite quantity in comparison with an infinite one. Suppose
for example that the asymptotic behavior of the unnormalized eigenfunction in a central potential is

Xklm(r, θ, φ) ≈ Akl
r

sin(kr − ϕl)Ylm(θ, φ). (2)

Introduce the normalized eigenfunction

ψklm = CklXklm. (3)

Then ∫
ψ∗k′l′m′(r)ψklm(r) d3r = δll′ δmm′ C∗k′l CklA

∗
k′lAkl

∫ ∞
0

sin(k′r − ϕl) sin(kr − ϕl) dr. (4)

We are interested only in values of k′ close to k. Writing sinx in terms of e±ix and keeping only terms that
diverge for k′ = k (in other words, omitting terms that contain the factor e±i(k+k

′)r),∫ ∞
0

sin(k′r − ϕl) sin(kr − ϕl) dr =

∫ ∞
0

eik
′r−iϕl − e−ik′r+iϕl

2i

eikr−iϕl − e−ikr+iϕl

2i
dr (5)

=
1

4

∫ ∞
0

[
ei(k

′−k)r + e−i(k
′−k)r

]
dr (6)

=
1

4

[∫ ∞
0

ei(k
′−k)r dr +

∫ 0

−∞
ei(k

′−k)r dr

]
(7)

=
1

4

∫ ∞
−∞

ei(k
′−k)r dr (8)

=
π

2
δ(k′ − k). (9)
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Thus ∫
ψ∗k′l′m′(r)ψklm(r) d3r = δll′ δmm′ |CklAkl|2

π

2
δ(k′ − k) (10)

Thus eigenfunctions normalized on the k/2π scale,∫
ψ∗k′l′m′(r)ψklm(r) d3r = δll′ δmm′ 2π δ(k′ − k), (11)

are

ψklm(r) =
2

Akl
Xklm(r), (12)

with asymptotic form

ψklm(r) ≈ 2

r
sin(kr − ϕl)Ylm(θ, φ). (13)

For reference, eigenfunctions normalized on the k scale are∫
ψk-scale∗k′l′m′ (r)ψk-scaleklm (r) d3r = δll′ δmm′ δ(k′ − k), (14)

are

ψk-scaleklm (r) =
1√
2π

ψklm(r) (15)

with asymptotic form

ψk-scaleklm (r) ≈
√

2

π

1

r
sin(kr − ϕl)Ylm(θ, φ). (16)

And eigenfunctions ψElm normalized on the energy scale E = k2~2/(2m),∫
ψ∗E′l′m′(r)ψElm(r) d3r = δll′ δmm′ δ(E′ − E), (17)

are

ψElm(r) =
1√

2π~v
ψklm(r), (18)

where v = k~/m, with asymptotic form

ψklm(r) ≈
√

2

π~v
1

r
sin(kr − ϕl)Ylm(θ, φ). (19)

3 Energy eigenfunctions for a free particle

3.1 Eigenfunctions of energy and linear momentum (plane waves)

Eigenfunctions of energy and linear momentum are parametrized by the 3-momentum p or the wave vector
k = p/~. They are commonly normalized according to one of the following scales.

On the momentum scale: ψp =
1

(2π~)3/2
eip·r/~,

∫
ψ∗p′ ψp d

3r = δ(p′ − p). (1)

On the reduced wave number scale: ψk = eik·r,

∫
ψ∗k′ ψk d

3r = (2π)3 δ(k′ − k). (2)
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Since momentum eigenfunctions with momenta p and −p correspond to the same energy E = p2/(2m),
any of their linear combinations is an energy eigenfunction with eigenvalue E. In particular, so are the real
functions

cos(k · r) = Re eik·r =
eik·r + e−ik·r

2
, (3)

sin(k · r) = Im eik·r =
eik·r − e−ik·r

2i
. (4)

Of course,

eik·r = cos(k · r) + i sin(k · r). (5)

When the time dependence is reinserted, the functions eik·r−iωt, where E = ~ω, have surfaces of constant
phase (“wave fronts”) moving in the direction of k with phase velocity ω/k, while the functions cos(k · r)
and sin(k · r) have stationary wave fronts (“standing waves”).

3.2 Eigenfunctions of energy and angular momentum (spherical waves)

Free particle wave functions in spherical coordinates are presented for example in Section 33 of Landau &
Lifshitz. They are

ψklm(r, θ, φ) = Rkl(r)Ylm(θ, φ), (6)

where in the k/2π scale

Rkl(r) = 2kjl(kr). (7)

Here k is the wave number, related to the energy as E = k2~2/(2m), and jl(x) is the spherical Bessel
function

jl(x) =

√
π

2x
Jl+1/2(x), (8)

where Jα(x) is the Bessel function of the first kind. The first few spherical Bessel functions are

j0(x) =
sinx

x
, j1(x) =

sinx

x2
− cosx

x
, j3(x) =

(
3

x3
− 1

x

)
sinx− 3 cosx

x2
. (9)

The asymptotic form of the radial wave functions at large r is

Rkl ≈
2 sin(kr − 1

2 lπ)

r
=
eikr−

i
2 lπ − e−ikr+

i
2 lπ

r
(10)

In analogy to “standing” and “moving” plane waves for energy and momentum eigenfunctions, one intro-
duces “outgoing” and “incoming” spherical waves with asymptotic behavior eikr and e−ikr, respectively. In
the reduced momentum scale they are given by

R+
kl(r) = kh

(1)
l (kr), R−kl(r) = kh

(2)
l (kr), (11)

respectively, where h
(1)
l (x) and h

(2)
l (x) are the spherical Hankel functions of the first and second kind. The

first few spherical Hankel functions are

h
(1)
0 (x) = −ie

ix

x
, h

(1)
1 (x) = −(x+ i)eix

x2
, h

(1)
2 (x) = i

(x2 − 3 + 3ix)eix

x3
; (12)

h
(2)
0 (x) = i

e−ix

x
, h

(2)
1 (x) = −(x− i)e−ix

x2
, h

(2)
2 (x) = −i(x

2 − 3− 3ix)e−ix

x3
. (13)
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Figure 1: Nodes of the free particle standing waves Rkl0 for l = 0, . . . , 7 (from top left) in the xz plane.

For real x, one has jl(x) = Reh
(1)
l (x) and h

(2)
l (x) = [h

(1)
l (x)]∗. Thus Rkl = ReR+

kl. The imaginary part
of R+

kl is singular at r = 0 and does not appear as a solution for the free particle. It appears however
in scattering problems off a finite-range central potential, in which free-particle spherical waves are used
outside the region with nonzero potential.

4 Energy eigenfunctions for a Coulomb potential

In a Coulomb potential V = −Ze2/(4πε0r), there are discrete energy eigenstates (bound states) and con-
tinuum energy eigenstates (scattering states).

Bound state wave functions in spherical coordinates for the n-th energy level En = E1/n
2 (with E1 =

−mc2α2/2 where α = e2/(4π~c) ' 1/137 is the fine structure constant) are of the form

ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ). (1)

The bound state radial wave functions are

Rnl(r) =
2

a
3/2
0 n2(2l + 1)!

√
(n+ l)!

(n− l − 1)!
ρl e−ρ/2 1F1(−n+ l + 1; 2l + 2; ρ), (2)

=
2

a
3/2
0 n2

√
(n− l − 1)!

(n+ l)!
e−ρ/2 ρl L2l+1

n−l−1(ρ), (3)

Here ρ = (2r)/(na0), a0 = ~/(mcα). (For the hydrogen atom, the quantity a0 is equal to the Bohr radius).
The functions Lmn (ρ) are the associated Laguerre polynomials. The function 1F1(α; γ; z) is the confluent
hypergeometric function

1F1(α; γ; z) = 1 +
α

1!γ
z +

α(α+ 1)

2!γ(γ + 1)
z2 + · · · . (4)

Continuum wave functions in spherical coordinates are presented for example in Section 36 of Landau
& Lifshitz. They are

ψklm(r, θ, φ) = Rkl(r)Ylm(θ, φ), (5)
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Figure 2: Nodes of the Coulomb standing waves Rkl0 (in black) for k = 1/a (i.e., η = 1) and l = 0, . . . , 7
(from top left) in the xz plane, compared with the nodes of the free particle standing waves with the same
k and l (in gray). The nodes of the Coulomb waves are closer to the center (attractive potential).

where

Rkl(r) =
Ckl

(2l + 1)!
(2kr)l e−ikr 1F1(l + 1 + iη; 2l + 2; 2ikr). (6)

Here k is the wave number, related to the energy as E = k2~2/(2m), with m the reduced mass, and
η = Z/(ka0). In the k/2π scale,

Ckl = 2keηπ/2|Γ(l + 1− iη)| = 2k

√
2πη

1− e−2πη
l∏

s=1

√
s2 + η2, (7)

where for l = 0 the product is replaced by unity. The asymptotic expression of Rkl at large r is

Rkl ≈
2

r
sin
(
kr + η log(2kr)− 1

2 lπ + δl
)
, (8)

where the Coulomb phase shift is

δl = arg Γ(l + 1− iη). (9)

When η → 0, one recovers the free particle radial wave functions,

Rkl(r) = 2kjl(kr) (η = 0). (10)

Here we used the identity

jl(z) =
l!

(2l + 1)!
(2z)l e−iz 1F1(l + 1; 2l + 2; 2iz). (11)
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Incoming and outgoing spherical Coulomb waves can also be defined by their asymptotic e∓ikr behavior.
One has incoming Coulomb waves

R−kl = Ckl
e−πη/2

Γ(l + 1− iη)

e−i[kr−(l+1)π/2+η log(2kr)]]

kr
2F0(l + 1 + iη, iη − l; i

2kr ), (12)

and outgoing Coulomb waves

R+
kl = Ckl

e−πη/2

Γ(l + 1 + iη)

e+i[kr−(l+1)π/2+η log(2kr)]]

kr
2F0(l + 1− iη,−iη − l;− i

2kr ). (13)

Here 2F0(α, β; z) is the generalized hypergeometric function

2F0(α, β; z) = 1 +
αβ

1!
z +

α(α+ 1)β(β + 1)

2!
z2 + · · · . (14)
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