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A charge inside a shell
Solve the electrostatic problem of a point charge q inside an uncharged conducting spherical
shell of radius R at a distance a from the center of the shell (Figure 1). In particular, find
the electric force on the charge q.

Figure 1.
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Solution.

The charge q induces a charge distribution on the inner and outer surfaces of the con-
ducting shell. The electric field due to the induced charges exerts a force on the charge q.
Thus we proceed by first finding the induced charges and then determining the electric field
they generate.

To find the induced charge densities σin and σout, and the net charge density σ = σin+σout,
we compute the total electric field (charge q plus induced charges) just inside and just outside
the shell, which we expect to be perpendicular to the shell, i.e., radial. We do it by computing
the total potential and taking its gradient. Then we use σin = −ε0Er,in and σout = ε0Er,out,
where Er,in and Er,out are the radial components of the electric field and the signs follow from
using small Gaussian surfaces across the inner and outer surfaces of the shell.

To find the electric field due to the induced charges, we subtract the potential due to the
charge q from the total potential found earlier and then take the gradient. Multiplying the
induced electric field by q gives us the force on the charge q.

Figure 2. Image charge.
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Total potential φ. We introduce spherical coordinates (r, θ, ϕ) with origin at the center of
the shell and z axis in the direction of charge q (Figure 2). We will find the electric potential
inside and outside the spherical shell, setting the potential to zero at infinity.



Outside the shell, we seek a potential function that is constant on the shell. One such
potential function is

φout(r, θ, ϕ) =
q

4πε0r
. (1)

it is correctly normalized as we can verify by taking a spherical Gaussian surface of radius
larger than R and recognizing that the net charge inside of it is q. By the uniqueness theorem,
equation (1) is the solution outside the shell.

To find the electric potential at the point P (r, θ, ϕ) inside the shell (r ≤ R) we use the
method of images. We introduce a fictitious charge q′ at a distance a′ from the center of the
shell as in Figure 2 (a′ ≥ R). Then the potential at P is

φin(r, θ, ϕ) =
q

4πε0

1√
r2 + a2 − 2ar cos θ

+
q′

4πε0

1√
r2 + a′2 − 2a′r cos θ

. (2)

We choose q′ and a′ so that the potential on the shell is constant, in particular equal to zero
just for the sake of finding q′ and a′ (we add the q/(4πε0R) potential of the shell later). On
the intersections of the shell with the z axis, this gives

q

4πε0

1

R− a
+

q′

4πε0

1

a′ −R
= 0,

q

4πε0

1

R + a
+

q′

4πε0

1

R + a′
= 0.

(3)

Solving the first equation for q′ = q(R− a′)/(R− a), substituting into the second equation,
and bringing the expression to common denominator leads to

(R− a)(R + a′) + (R− a′)(R + a) = 0,

=⇒ R(R− a+R + a) + (R− a−R− a)a′ = 0,

=⇒ 2R2 − 2aa′ = 0,

=⇒ aa′ = R2,

=⇒ a′ =
R2

a
. (4)

And then

q′ = q
R− a′

R− a
= q

R− (R2/a)

R− a
= q

aR−R2

a(R− a)
= q

R(a−R)

a(R− a)
= −qR

a
. (5)

Thus the potential inside the shell is (after adding back the q/(4πε0R) potential of the shell)

φin(r, θ, ϕ) =
q

4πε0

1√
r2 + a2 − 2ar cos θ

− q

4πε0

R

a

1√
r2 + R4

a2
− 2R

2r
a

cos θ
+

q

4πε0R

=⇒ φin(r, θ, ϕ) =
q

4πε0

[
1√

r2 + a2 − 2ar cos θ
− R√

a2r2 +R4 − 2R2ar cos θ
+

1

R

]
. (6)
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Figure 3 shows a sketch of the equipotential lines for the total electric potential

φ(r, θ, ϕ) =

{
φin(r, θ, ϕ), r ≤ R,

φout(r, θ, ϕ), r ≥ R.
(7)

Figure 3 has been produced using the ContourPlot function in Mathematica on the function
φ(r, θ, 0)/φR with φR = q/(4πε0R) and a = 0.65R.

Figure 3. Total electric potential.

Electric field. The spherical components of the electric field outside the shell are the
same as those of a Coulomb field,

Er,out(r, θ, ϕ) =
q

4πε0r2
, (8)

Eθ,out(r, θ, ϕ) = 0, (9)

Eϕ,out(r, θ, ϕ) = 0. (10)

The spherical components of the electric field inside the shell can be obtained from the
formula E = −∇φ,

Er,in(r, θ, ϕ) = −∂φin

∂r
=

q

4πε0

[
r − a cos θ

(r2 + a2 − 2ar cos θ)3/2
− aR(ar −R2 cos θ)

(a2r2 +R4 − 2R2ar cos θ)3/2

]
,

(11)

Eθ,in(r, θ, ϕ) = −1

r

∂φin

∂θ
=

q

4πε0

[
a sin θ

(r2 + a2 − 2ar cos θ)3/2
− aR3 sin θ

(a2r2 +R4 − 2R2ar cos θ)3/2

]
(12)

Eϕ,in(r, θ, ϕ) = − 1

r sin θ

∂φin

∂ϕ
= 0. (13)

Figure 4 shows a sketch of the field lines for the total electric field. The field lines outside
the shell are radial as for a Coulomb field. The field lines inside the shell are obtained
parametrically by numerically solving the equations dr′/dλ = r′2Er′ , dθ

′/dλ = r′2Eθ′ in
Mathematica, where (r′, θ′, ϕ′) are spherical coordinates with the origin on the charge q..
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Figure 4. Electric field lines
(assuming a positive charge q;
reverse the direction of the ar-
rows for a negative charge q).

Charge density σ. The spherical components of the electric field on the outer surface of
the shell are obtained setting r = R in Equations (8–10),

Er,out|r=R =
q

4πε0R2
, (14)

Eθ,out|r=R = 0, (15)

Eϕ,out|r=R = 0. (16)

Thus the surface charge density on the outer surface of the shell is

σout = ε0Er,out =
q

4πR2
. (17)

It is a uniform charge distribution of the same sign as q. Its integral over the surface of the
shell is equal to q.

The spherical components of the electric field on the inner surface of the shell are obtained
setting r = R in Equations (11–13),

Er,in|r=R =
q

4πε0

[
R− a cos θ

(R2 + a2 − 2aR cos θ)3/2
− a(a−R cos θ)

R(R2 + a2 − 2aR cos θ)3/2

]
=

q

4πε0R

R2 − a2

(R2 + a2 − 2aR cos θ)3/2
, (18)

Eθ,in|r=R =
q

4πε0R

[
aR sin θ

(R2 + a2 − 2aR cos θ)3/2
− aR sin θ

(R2 + a2 − 2aR cos θ)3/2

]
= 0, (19)

Eϕ,in|r=R = 0. (20)

The electric field on the inner surface is radial as expected. The surface charge density on
the inner surface of the shell is

σin = −ε0Er,in = − q

4πR

R2 − a2

(R2 + a2 − 2aR cos θ)3/2
. (21)

It is a non-uniform charge distribution of sign opposite to that of q. The inner charge density
is stronger on the side of the shell nearest to the charge q. One can check that the integral
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of σin over the surface of the shell is equal to −q,∫
σin sin θ dθ dϕ = −q.

The net surface charge density on the shell finally follows as

σ = σout + σin, (22)

=⇒ σ =
q

4πR2

[
1− R(R2 − a2)

(R2 + a2 − 2aR cos θ)3/2

]
. (23)

The charge density σ, divided by the average charge density σ = q/(4πR2), is plotted as a
function of cos θ in Figure 5 for various values of a. The charge on the shell is of opposite
sign to q on the side of the shell closest to q and of the same sign as q on the side of the shell
farthest from q.

Figure 5. Induced charge density.
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Induced electric potential. The potential due to the induced charges on the shell is
obtained from φ(r, θ, ϕ) by subtracting the potential due to the point charge at q. Thus

φinduced(r, θ, ϕ) =


q

4πε0

[
− R√

a2r2 +R4 − 2R2ar cos θ
+

1

R

]
, r ≤ R,

q

4πε0

[
1

r
− 1√

r2 + a2 − 2ar cos θ

]
, r ≥ R.

(24)

The induced potential inside is the same as the potential due to the image charge q′ = −qR/a
in Figure 2 (apart from the constant q/(4πε0R)). The induced potential outside the shell is
the potential of two equal and opposite charges, a charge +q at the origin and a charge −q
at the location of the charge q.

Figure 6 shows equipotential lines for the induced potential, produced with ContourPlot

function in Mathematica on the function φinduced(r, θ, 0)/φR with φR = q/(4πε0R) and a =
0.65R. .
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Figure 6. Induced electric potential.

Induced electric field. The spherical components of the induced electric field are

Er,induced = −∂φinduced

∂r
=


− q

4πε0

a2Rr − aR2 cos θ)

(a2r2 +R4 − 2R2ar cos θ)3/2
, r ≤ R,

q

4πε0r2
− q

4πε0

r − a cos θ

(r2 + a2 − 2ar cos θ)3/2
, r ≥ R,

(25)

Eθ,induced = −1

r

∂φinduced

∂θ
=


− q

4πε0

aR3 sin θ

(a2r2 +R4 − 2R2ar cos θ)3/2
, r ≤ R,

− q

4πε0

a sin θ

(r2 + a2 − 2ar cos θ)3/2
, r ≥ R,

(26)

Eϕ,induced = − 1

r sin θ

∂φinduced

∂ϕ
= 0. (27)

Figure 7 shows a sketch of the field lines for the induced electric field. The field lines
inside the shell are radial as for a Coulomb field centered at position of the image charge. The
field lines inside the shell are obtained parametrically by numerically solving the equations
dz/dλ = r3Ez, dy/dλ = r3Ey in Mathematica, where (x, y, z) are Cartesian coordinates with
the origin at the center of the shell.

Figure 7. Induced electric
field lines (assuming a positive
charge q; reverse the direction
of the arrows for a negative
charge q).
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Electric force on charge q. The force on charge q can be obtained from F = qEinduced

with Einduced evaluated at the location of charge q. We compute

Er,induced|r=a,θ=0 =
q

4πε0

[
− aR(a2 −R2)

(a4 +R4 − 2R2a2)3/2

]
=

q

4πε0

[
aR(R2 − a2)
(R2 − a2)3

]
=

q

4πε0

aR

(R2 − a2)2
, (28)

Eθ,induced|r=a,θ=0 = 0, (29)

Eϕ,induced|r=R = 0. (30)

Thus

Fr =
q2

4πε0

aR

(R2 − a2)2
, Fθ = Fϕ = 0. (31)

Figure 8 shows the electric force Fr as a function of the off-center distance a. In the figure,
F0 = q2/(4πε0R

2).

Figure 8. Radial compo-
nent of the electric force on
charge q.
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The force is radial and directed outward. Since the force depends on q2, the force is inde-
pendent of the sign of the charge q. The charge q is attracted toward the point on the shell
closest to q.
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