## Due in class Thursday February $28^{\text {th }}$

## Lagrangian Mechanics:

1. Two blocks, both of mass $M$, are connected with a spring with spring constant $k$. They slide in the $x$-direction on a frictionless surface.
(a) Use the Lagrangian formalism to find coupled differential equations for the positions $x_{1}$ and $x_{2}$ of the two blocks.
(b) Use these equations to show that the center-of-mass of the system moves with constant velocity.
(c) Find the period of oscillation of the two masses with respect to each other.
2. Consider the double pendulum in the figure below, consisting of two bobs of mass $m_{1}$ and $m_{2}$ at the ends of massless rods of length $l_{1}$ and $l_{2}$ in which the second rod swings from the first mass.
(a) Derive (but do not solve) the equations of motion for the two bobs in terms of their coordinates $\theta_{1}$ and $\theta_{2}$. You may find the arithmetic easier if you make use of the trigonometric identity

$$
\cos A \cos B+\sin A \sin B=\cos (A-B)
$$

(b) Find the simplified version of these equations for the case in which $\theta_{1}$ and $\theta_{2}$ are both small angles.


Additional problems on the back of this page.

Normal Modes of Oscillation:
3. $K \xi K$ Problem 6.3.
4. See the figure below. Three springs and two equal masses lie between two walls. The spring constant $K$ of the outer springs is larger than the spring constant $k$ of the inner spring. Let $x_{1}$ and $x_{2}$ be the positions of the left and right masses, respectively, relative to their equilibrium positions.

(a) Find general oscillatory solutions for $x_{1}(t)$ and $x_{2}(t)$.
(b) Assume $K / m=1.0 / \mathrm{s}^{2}$ and $k=0.2 K$. Plot $x_{1}$ and $x_{2}$ versus time for the normal modes of the system. Assume the equilibrium distance between the two masses is 1.0 m .
(c) Now, find the particular solutions for $x_{1}$ and $x_{2}$, for the initial conditions:

$$
\begin{aligned}
x_{1}(0) & =0.0 \mathrm{~m} \\
\dot{x}_{1}(0) & =0.0 \mathrm{~m} / \mathrm{s} \\
x_{2}(0) & =0.4 \mathrm{~m} \\
\dot{x}_{2}(0) & =0.0 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Plot these solutions for $t$ in the range $0-100 \mathrm{~s}$.
(Note: If you don't have access to a graphing program on your computer, have a look at online plotting tools such as WolframAlpha and fooplot.com.)
1)


$$
\begin{aligned}
& \text { a) } L=K-U=\frac{1}{2} M \dot{x}_{1}^{2}+\frac{1}{2} M \dot{x}_{2}^{2}-\frac{1}{2} k\left(x_{2}-x_{1}\right)^{2} \\
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}_{1}}\right)-\frac{\partial L}{\partial x_{1}}=M \ddot{x}_{1}-k\left(x_{2}-x_{1}\right)=0 \\
& (1) \ddot{x}_{1}-\omega^{2} x_{2}+\omega^{2} x_{1}=0 \quad \omega=\sqrt{\frac{k}{m}} \\
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}_{2}}\right)-\frac{\partial L}{\partial x_{2}}=M \ddot{x}_{2}+k\left(x_{2}-x_{1}\right)=0
\end{aligned}
$$

(2) $\ddot{x}_{2}+\omega^{2} x_{2}-\omega^{2} x_{1}=0$
b) ADD EquS (1) and (2):

$$
\ddot{x}_{1}+\ddot{x}_{2}=0
$$

Accerentron
OF C.O.M $=\frac{M \ddot{x}_{1}+M \ddot{x}_{2}}{2 m}=\frac{1}{2}\left(\ddot{x}_{1}+\ddot{x}_{2}\right)=0$
$\therefore$ Com maves w/ constant $\vec{V}$
c) Susmint Eair (1)-(2)

$$
\left(\ddot{x}_{1}-\ddot{x}_{2}\right)+2 \omega^{2}\left(x_{1}-x_{2}\right)=0
$$

Simple Hrmavic oscicitor in $\left(x_{1}-x_{2}\right)$ w/ frea $\omega^{\prime}=\sqrt{2} \omega$

$$
=\sqrt{\frac{2 k}{m}}
$$

Period of oscuchition $T=\frac{2 \lambda}{\omega^{\prime}}=\pi \sqrt{\frac{2 m}{k}}$
2) EASIEST TO SIAnT By WRITIna Down CTanmarm in CRatESIAN COOMDS, THEN USE TIGONOMETVY TO CONvent:
a) $L=K-U=\frac{1}{2} m_{1}\left(\dot{x}_{1}^{2}+\dot{y}_{1}^{2}\right)+\frac{1}{2} m_{2}\left(\dot{x}_{2}^{2}+\dot{y}_{2}^{2}\right)-m_{1} g y_{1}-m_{2} g y_{2}$

Now,

$$
\begin{array}{ll}
x_{1}=l_{1} \sin \theta_{1} & \dot{x}_{1}=l_{1} \dot{\theta}_{1} \cos \theta_{1} \\
y_{1}=-l_{1} \cos \theta_{1} & \dot{y}_{1}=l_{1} \dot{\theta}_{1} \sin \theta_{1} \\
x_{2}=l_{1} \sin \theta_{1}+l_{2} \sin \theta_{2} & \dot{x}_{2}=l_{1} \dot{\theta}_{1} \cos \theta_{1}+l_{2} \dot{\theta}_{2} \cos \theta_{2} \\
y_{2}=-l_{1} \cos \theta_{1}-l_{2} \cos \theta_{2} & \dot{y}_{2}=l_{1} \dot{\theta}_{1} \sin \theta_{1}+l_{2} \dot{\theta}_{2} \sin \theta_{2}
\end{array}
$$

Plua these into Exprassion fon caanamaitin

$$
\begin{aligned}
L=\frac{1}{2} m_{1} l_{1}^{2} \dot{\theta}_{1}^{2} & +\frac{1}{2} m_{2} l_{1}^{2} \dot{\theta}_{1}^{2}+\frac{1}{2} m_{2} l_{2}^{2} \dot{\theta}_{2}^{2}+m_{2} l_{1} l_{2} \dot{\theta}_{1} \dot{\theta}_{2}\left(\cos \theta_{1} \cos \theta_{2}+\sin \theta_{1} \sin \theta_{2}\right) \\
& +m_{1} g l_{1} \cos \theta_{1}+m_{2} g l_{1} \cos \theta_{1}+m_{2} g l_{2} \cos \theta_{2}
\end{aligned}
$$

use $\cos A \cos B+\sin A \sin B=\cos (A-B)$
$\nRightarrow$

$$
\begin{aligned}
L=\frac{1}{2} m_{1} l_{1}^{2} \dot{\theta}_{1}^{2} & +\frac{1}{2} m_{2} l_{1}^{2} \dot{\theta}_{1}^{2}+\frac{1}{2} m l_{2}^{2} \dot{\theta}_{2}^{2}+m_{2} l_{1} l_{2} \dot{\theta}_{1} \dot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right) \\
& +m_{1} g l_{1} \cos \theta_{1}+m_{2} g l_{2} \cos \theta_{1}+m_{2} g l_{2} \cos \theta_{2}
\end{aligned}
$$

Plug Liwto Encer-Lagrange EQaarions, for gereralized coordwares $\theta_{1} \notin \theta_{2}$ :

$$
\begin{aligned}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)-\frac{\partial L}{\partial \theta}=\left(m_{1}+m_{2}\right) l_{1}^{2} \ddot{\theta}_{1} & +m_{2} l_{1} l_{2}\left[\ddot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right)+\dot{\theta}_{2}^{2} \sin \left(\theta_{1}-\theta_{2}\right)\right] \\
& +\left(m_{1}+m_{2}\right) g l_{1} \operatorname{siv} \theta_{1}=0 \\
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{\theta}}\right)-\frac{\partial L}{\partial \theta}=m_{2} l_{2}^{2} \ddot{\theta}_{2} & +m_{2} l_{1} l_{2}\left[\ddot{\theta}_{1} \cos \left(\theta_{1}-\theta_{2}\right)-\dot{\theta}_{1}^{2} \sin \left(\theta-\theta_{2}\right)\right] \\
& +m_{2} g l_{2} \operatorname{siv} \theta_{2}=0
\end{aligned}
$$

2a)... Contrueds
rewriting...

$$
\begin{aligned}
& \ddot{\theta}_{1}+\frac{m_{2}}{m_{1}+m_{2}} \frac{l_{2}}{l_{1}}\left(\ddot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right)+\dot{\theta}_{2}^{2} \sin \left(\theta_{1}-\theta_{2}\right)\right)+\frac{g}{l_{1}} \sin \theta_{1}=0 \\
& \ddot{\theta}_{2}+\frac{l_{1}}{l_{2}}\left(\ddot{\theta}_{1} \cos \left(\theta_{1}-\theta_{2}\right)-\dot{\theta}_{1}^{2} \sin \left(\theta_{1}-\theta_{2}\right)\right)+\frac{g}{l_{2}} \sin \theta_{2}=0
\end{aligned}
$$

b) Small angle approximatov, $\sin \theta \approx \theta$

$$
\begin{gathered}
\cos \theta \approx 1 \\
\ddot{\theta}_{1}+\left(\frac{m_{2}}{m_{1}+m_{2}}\right) \frac{l_{2}}{l_{1}}\left(\ddot{\theta}_{2}+\dot{\theta}_{2}^{2}\left(\theta_{1}-\theta_{2}\right)\right)+\frac{g}{l_{1}} \theta_{1}=0 \\
\ddot{\theta}_{2}+\frac{l_{1}}{l_{2}}\left(\ddot{\theta}_{1}-\dot{\theta}_{1}^{2}\left(\theta_{1}-\theta_{2}\right)\right)+\frac{g}{l_{2}} \theta_{2}=0
\end{gathered}
$$

3) $K \not K K \quad 6.3$


$$
\begin{aligned}
& L=K-U=\frac{1}{2} m \dot{x}_{1}^{2}+\frac{1}{2} m \dot{x}_{2}^{2}+\frac{1}{2} m \dot{x}_{3}^{2}+\frac{1}{2} m \dot{x}_{4}^{2} \\
& \quad-\frac{1}{2} k\left(x_{2}-x_{1}\right)^{2}-\frac{1}{2} k\left(x_{3}-x_{2}\right)^{2}-\frac{1}{2} k\left(x_{4}-x_{3}\right)^{2} \\
& \begin{array}{l}
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}_{1}}\right)-\frac{\partial L}{\partial x_{1}}=m \ddot{x}_{1}
\end{array}-k\left(x_{2}-x_{1}\right)=0 \\
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}_{2}}\right)-\frac{\partial L}{\partial x_{2}}=m \ddot{x}_{2}+k\left(x_{4}-x_{1}\right)-k\left(x_{3}-x_{2}\right)=0 \\
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}_{3}}\right)-\frac{\partial L}{\partial x_{3}}=m \ddot{x}_{3}+k\left(x_{3}-x_{2}\right)-k\left(x_{4}-x_{3}\right)=0 \\
& \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}_{4}}\right)-\frac{\partial L}{\partial x_{4}}=m \ddot{x}_{4}+k\left(x_{4}-x_{3}\right)=0
\end{aligned}
$$

Let $\omega_{0}=\sqrt{\frac{k}{m}}, \beta=\frac{\omega^{2}}{\omega_{0}^{2}}, \ddot{x}_{i}=-\omega^{2} x_{i}$
Then above can be waitron is

$$
\begin{aligned}
& \beta x_{1}=\left(x_{1}-x_{2}\right) \\
& \beta x_{2}=\left(2 x_{2}-x_{1}-x_{3}\right) \\
& \beta x_{3}=\left(2 x_{3}-x_{2}-x_{4}\right) \\
& \beta x_{4}=\left(x_{4}-x_{3}\right)
\end{aligned}
$$

By symmences \& condrron that C.O.M. is at Rest, Possible Noun modes are
(I) $\left(x_{4}=x_{1}\right)$ And $\left(x_{3}=x_{2}\right)$
(II) $\left(x_{4}=-x_{1}\right)$ Ans $\left(x_{3}=-x_{2}\right)$

CTSE I UNIte EQNS TRE
(c) $\beta x_{1}=x_{1}-x_{2}$
(ci)

$$
\begin{aligned}
& \beta x_{2}=\left(2 x_{2}-x_{1}-x_{2}\right)=\left(x_{2}-x_{1}\right) \\
& \underbrace{x_{1}(1-\beta)=x_{2}}_{0}=\frac{x_{1}}{(1-\beta)} \\
& 1+\beta^{2}-2 \beta=1 \\
& \beta^{2}=2 \beta \\
& \beta=2=\frac{\omega^{2}}{\omega_{0}^{2}} ; \quad \omega=\sqrt{\frac{2 k}{m}}
\end{aligned}
$$

Case II Unique EquAtions the
(iii) $\beta x_{1}=x_{1}-x_{2}$
(iv) $\beta x_{2}=2 x_{2}-x_{1}+x_{2}=3 x_{2}-x_{1}$

$$
\underbrace{x_{1}(1-\beta)=x_{\text {(ii) }}^{x_{2}}=\frac{x_{1}}{3-\beta}}_{\text {(iii) }}
$$

$$
\begin{array}{r}
(1-\beta)(3-\beta)=1 \\
\beta^{2}-4 \beta+2=0 \\
\beta=2 \pm \sqrt{2}=\frac{\omega^{2}}{\omega_{0}^{2}} \\
\therefore \omega=\sqrt{\frac{(2 \pm \sqrt{2}) k}{m}}
\end{array}
$$

4) 

$$
\begin{array}{r}
L=\frac{1}{2} m \dot{x}_{1}^{2}+\frac{1}{2} m \dot{x}_{2}^{2}-\frac{1}{2} K x_{1}^{2}-\frac{1}{2} k\left(x_{2}-x_{1}\right)^{2}-\frac{1}{2} K x_{2}^{2} \\
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}_{1}}\right)-\frac{\partial L}{\partial x_{1}}=m \ddot{x}_{1}+K x_{1}-k\left(x_{2}-x_{1}\right)=0 \\
\ddot{x}_{1}+\left(\frac{k+K}{m}\right) x_{1}-\frac{k}{m} x_{2}=0 \\
\frac{d}{d t}\left(\frac{\partial}{\partial \dot{x}_{2}}\right)-\frac{\partial L}{\partial x_{2}}=m \ddot{x}_{2}+K x_{2}+k\left(x_{2}-x_{1}\right)=0 \\
\ddot{x}_{2}+\left(\frac{k+K}{m}\right) x_{2}-\frac{k}{m} x_{1}=0 \tag{ii}
\end{array}
$$

AOD (C) $\ddagger$ (2i) $\left(\ddot{x}_{1}+\ddot{x}_{2}\right)+\frac{k}{m}\left(x_{1}+x_{2}\right)=0$
Susmacr (c) (ci) $\left(\ddot{x}_{1}-\ddot{x}_{2}\right)+\left(\frac{2 k+k}{m}\right)\left(x_{1}-x_{2}\right)=0$
So $x_{t}=x_{1}+x_{2}$ and $x_{-}=x_{1}-x_{2}$ Hhe aerenc socurions

$$
\begin{array}{ll}
x_{+}=A_{+} \cos \left(\omega_{+} t+\phi_{+}\right) & \omega_{+}=\sqrt{\frac{K}{m}} \\
x_{-}=A_{-} \cos \left(\omega_{-} t+\phi_{-}\right) & \omega_{-}=\sqrt{\frac{2 k+K}{m}}
\end{array}
$$

Ans $x_{1}=\frac{x_{+}+x_{-}}{2}=\frac{A_{+}}{2} \cos \left(\omega_{+} t+\phi_{+}\right)+\frac{A_{-}}{2} \cos \left(\omega_{-} t+\phi_{-}\right)$

$$
x_{2}=\frac{x_{+}-x_{-}}{2}=\frac{A_{+}}{2} \cos \left(\omega_{+} t+\phi_{+}\right)-\frac{A_{-}}{2} \cos \left(\omega_{-} t+\phi_{-}\right)
$$

tpley wirnt corimons $x_{1}(t=0)=0, x_{2}(t=0)=0.4 \mathrm{~m}, \dot{x},(0)=\dot{x}_{2}(0)=0$
$\Rightarrow$ vecociry Ic's give $\phi_{+}=\phi_{-}=0$
$\Rightarrow$ Then posinou IC's $\frac{A_{+}}{2}+\frac{A_{-}}{2}=0$

$$
\begin{aligned}
& \frac{A_{+}}{2}-\frac{A_{-}}{2}=0.4 \\
\Leftrightarrow A_{+} & =0.4 \mathrm{~m}, A_{-}=-0.4 \mathrm{~m}
\end{aligned}
$$

$\sec$ fermenor) Peors $\longrightarrow$



