Due in class Thursday January $17^{\text {th }}$

1. Find the cosine and the sine of the angle between

$$
\begin{aligned}
& \vec{A}=3 \hat{i}-\hat{j}+2 \hat{k} \quad \text { and } \\
& \vec{B}=-\hat{i}-\hat{j}+4 \hat{k}
\end{aligned}
$$

2. $K \& K^{1}$ Problem 1.7. (See hint in back of book.)
3. Find a unit vector perpendicular to both \vec{A} and \vec{B}, from Problem 1 above.
4. $K \mathscr{G} K$ Problem 1.10, but use the vector \vec{A} from Problem 1 above.
5. A bomber plane flies horizontally over level terrain at $700 \mathrm{~km} / \mathrm{hr}$, at an altitude of 3.0 km , and drops a bomb. Neglect air resistance.
(a) How far does the bomb travel horizontally between its release and hitting the ground?
(b) If the bomber maintains its course, where is it when the bomb hits the ground?
6. A cannonball is fired with initial speed v_{0} at an angle of θ with respect to the ground. Assume air resistance can be neglected.

(a) Find an equation for the distance d traveled by the ball before it hits the ground, as a function of v_{0}, θ, and g.
(b) For which angle θ will the range d of the cannonball be maximized?

Problems continued on the next page.

[^0]7. $K \mathcal{B} K$ Problem 1.20. It will probably help to start by making sketches of speed versus time and position versus time for the car.
8. Consider uniform acceleration in polar coordinates. Suppose a ball is dropped at rest from a height h and horizontal distance d from the origin of coordinates. Find the radial speed $d r / d t$ and angular speed $\omega=(d \theta / d t)$ just before the ball hits the ground.

9. $K \mathscr{G} K$ Problem 1.25.
10. $K \mathscr{K} K$ Problem 1.27.

Homework \#1 Socurions

1) $\left.\begin{array}{rl}\vec{A} & =3 \hat{x}-\hat{y}+2 \hat{z} \\ \vec{B} & =-\hat{x}-\hat{y}+4 \hat{z}\end{array}\right\}$ rais $\begin{aligned} \text { cosive d sive of } \\ \text { Anace senveen } \vec{A} \& \vec{B}\end{aligned}$

Compure matuitubes: $A=\sqrt{\vec{A} \cdot \vec{A}}=\sqrt{3^{2}+(-1)^{2}+2^{2}}=\sqrt{14}$

$$
B=\sqrt{\vec{B} \cdot \vec{B}}=\sqrt{(-1)^{2}+(-1)^{2}+4^{2}}=\sqrt{18}
$$

From Definion of "Dor" Product:

$$
\cos \theta=\frac{\vec{A} \cdot \vec{B}}{A B}=\frac{(3)(-1)+(-1)(-1)+(2)(4)}{\sqrt{14} \sqrt{18}}=0.37796
$$

\& "cross" product:

$$
\begin{aligned}
&|\sin \theta|=\frac{|\vec{A} \times \vec{B}|}{A B} \Rightarrow \vec{A} \times \vec{B}=[(-1) 4-(-1) 2] \hat{x}+[2(-1)-4 \cdot 3] \hat{y}+[3(-1)-(-1)(-1)] \hat{z} \\
&=-2 \hat{x}-14 \hat{y}-4 \hat{z} \\
&|\vec{A} \times \vec{B}|=\sqrt{(\vec{A}+\vec{B}) \cdot(\vec{A} \times \vec{B})}=\sqrt{(-2)^{2}+(-14)^{2}+(-4)^{2}} \\
&=\sqrt{216} \\
&|\sin \theta|=\frac{\sqrt{216}}{\sqrt{14} \sqrt{18}}=0.92582 \\
& \sin \theta= \pm 0.92582
\end{aligned}
$$

2) $\mathrm{K} \mathrm{\& K} 1.7$

$$
\begin{array}{rlrl}
|\vec{A} \times \vec{B}|=(\text { Anet of Pararcecoarim) })=2 \cdot(\text { Anet Thimace }) & =A B \sin \theta_{C} \\
|\vec{B} \times \vec{C}|= & " \quad " \quad & =B C \operatorname{siv} \theta_{A} \\
|\vec{C} \times \vec{A}|= & " \quad & =C A \sin \theta_{B}
\end{array}
$$

so

$$
A B \sin \theta_{C}=B C \sin \theta_{A}+C A \sin \theta_{B}
$$

Diribe trian by ABC to OBTHU

$$
\frac{\sin \theta_{C}}{C}=\frac{\sin \theta_{A}}{A}=\frac{\sin \theta_{B}}{B} \text { "Lin of sives" }
$$

3) Find 4 unit vecion perperdicucta to soin $\vec{A}=3 \hat{x}+(-1) \hat{y}+2 \hat{z}$

$$
\vec{B}=(-1) \hat{x}+(-\hat{y})+4 \hat{z}
$$

By Defo, the cross product of \vec{A} a \vec{B} wice be Perpabicalon To som.

From proscem 1, we ruc $\vec{A} \times \vec{B}=(-2) \hat{x}+(-14) \hat{y}+(-4) \vec{z}$ cneare A anir vecron by Dovising $\vec{A} \times \vec{B}$ by irs mityarmbe

Atan, rrou proscen , $|\vec{A} \times \vec{B}|=\sqrt{216}$
So THE पیIT vecion we wint is $\hat{x}=\frac{1}{\sqrt{216}}(-2 \hat{x}-14 \hat{y}-4 \hat{z})$
4) $K \notin K 1.10$, w $\vec{A}=3 \hat{x}+(-1) \hat{y}+2 \hat{z}$

$$
A=\sqrt{\vec{A} \cdot \vec{A}}=\sqrt{3^{2}+(-1)^{2}+2^{2}}=\sqrt{14}
$$

a) Let $\hat{\hat{B}}=B_{x} \hat{x}+B_{y} \hat{y} \quad$ (Vecton in xy plane) $\hat{B}_{\perp} \vec{A}$, so $\vec{A} \cdot \hat{B}=3 B_{x}+(-1) B_{y}=0$ $B_{y}=3 B_{x}$
Now \hat{B} is A auir vecton, so $|\hat{B}|=\sqrt{\hat{B} \cdot \hat{B}}=\sqrt{B_{x}^{2}+\left(3 B_{x}\right)^{2}}=1$

$$
\begin{gathered}
B_{x}=\sqrt{\frac{1}{10}} \\
\therefore \hat{B}=\left(\sqrt{\frac{1}{10}} \hat{x}+\sqrt{\frac{9}{10}} \hat{y}\right){ }^{B_{y}=3 \sqrt{\frac{1}{10}}=\sqrt{\frac{9}{10}}}
\end{gathered}
$$

b) If \hat{C}, \vec{A} ms $\hat{C}_{\perp} \hat{B}, \hat{C}=\frac{\vec{A} \times \hat{B}}{A}$

$$
\begin{aligned}
& \vec{A} \times \hat{B}=\operatorname{det}\left(\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
3 & -1 & 2 \\
\sqrt{\frac{1}{10}} & \sqrt{\frac{9}{10}} & 0
\end{array}\right)^{A}=\frac{1}{\sqrt{10}}(-6 \hat{x}+2 \hat{y}+10 \hat{z}) \\
& \hat{C}=\frac{\vec{A} \times \hat{B}}{A}=\frac{1}{\sqrt{140}}(-6 \hat{x}+2 \hat{y}+10 \hat{z})
\end{aligned}
$$

c) Now, $\hat{B} \times \hat{C}$ is perpendicucm to Pime conthuina \hat{B} \& \hat{C}

$$
\begin{aligned}
\hat{B} \times \hat{C} & =\frac{1}{\sqrt{10}} \cdot \frac{1}{\sqrt{140}} \cdot \operatorname{det}\left(\begin{array}{ccc}
\hat{x} & \hat{y} & \hat{z} \\
1 & 3 & 0 \\
-6 & 2 & 10
\end{array}\right) \\
& =\frac{1}{\sqrt{1400}}(30 \hat{x}+(-10) \hat{y}+20 \hat{z})
\end{aligned}
$$

Geeancy $\hat{B} \times \hat{C}$ is proponionne to \vec{A}, so \vec{A} is perpasicucin to Pline

$$
h=3.0 \mathrm{~km} \underbrace{}_{\text {Bomsen PLNE }} \quad 700 \mathrm{~km} / \mathrm{ha}
$$

a)

$$
\begin{aligned}
& x=x_{0}+V_{0 x} t \\
& y=y_{0}+v_{0 y} t+\frac{1}{2} a t^{2} \\
& =h-\frac{1}{2} g t^{2} \\
& Y_{\text {ground }}=h-\frac{1}{2} g t^{2}=0 \\
& h=\frac{1}{2} g t^{2} \\
& t=\sqrt{\frac{2 h}{g}}=\sqrt{\frac{2 \times 3000 \mathrm{~m}}{9.81 \mathrm{~m} / \mathrm{s}^{2}}}=24.731 \mathrm{sec}
\end{aligned}
$$

Distince innecced by bous $d=x-x_{0}=V_{0 x} t$

$$
\begin{aligned}
& =\left(700 \frac{\mathrm{~km}}{\mathrm{hr}}\right)\left(\frac{1000 \mathrm{~m}}{\mathrm{~km}}\right) \cdot\left(\frac{1 \mathrm{hr}}{3600 \mathrm{~s}}\right) \cdot 24.731 \mathrm{~s} \\
& =4,809 \mathrm{~m} \\
d & =4.809 \mathrm{~km}
\end{aligned}
$$

b) If the bomben mpatmas counse, it is Drecray oven The Bomb when it Mits The Grouad.
6)

a)

$$
\begin{gathered}
d=x-x_{0}=V_{0 x} t=V_{0} \cos \theta t \\
h=y-y_{0}=V_{0 y} t-\frac{1}{2} g t^{2}=0 \quad \text { (when sine } \\
V_{0} \sin \theta=\frac{1}{2} g t \quad \\
t=\frac{2 V_{0}}{g} \sin \theta
\end{gathered}
$$

and $d=\frac{2 v_{0}^{2}}{g} \cos \theta \sin \theta$
b) Find angle θ ginny max d by setting

$$
\begin{gathered}
\frac{d}{d \theta} d=\frac{2 v_{0}^{2}}{g}[-\sin \theta \sin \theta+\cos \theta \cos \theta]=0 \\
\cos ^{2} \theta=\sin ^{2} \theta \\
\theta=45^{\circ}
\end{gathered}
$$

7) $K \& K$ Proscem 1.20

Sketer speed \& posinon:

Can accelenares $\uparrow T$

$$
\begin{aligned}
a_{1} & =\frac{100 \frac{\mathrm{k}}{\mathrm{hm}}}{3.5 \mathrm{~s}} \times\left(\frac{1 \mathrm{hm}}{3000 \mathrm{~s}}\right) \times\left(\frac{1000 \mathrm{~m}}{\mathrm{~km}}\right) \\
& =7.9365 \mathrm{~m} / \mathrm{s}^{2} \\
a_{2} & =0.7 \times 9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}=6.867 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Now, $D=d_{1}+d_{2}=\frac{1}{2} a_{1} t_{1}^{2}+v_{\max } t_{2}-\frac{1}{2} a_{2} t_{2}^{2}$
ALso $\quad V_{\text {max }}=a_{2} t_{2}, a_{1} t_{1}=a_{2} t_{2}, t_{1}=\frac{a_{2}}{a_{1}} t_{2}$
So $\quad D=\frac{1}{2} a_{1}\left[\frac{a_{2}}{a_{1}} t_{2}\right]^{2}+a_{2} t_{2}^{2}-\frac{1}{2} a_{2} t_{2}^{2}$
Sanitumetic

$$
\begin{aligned}
& T=t_{1}+t_{2}=\sqrt{\frac{2 D\left(a_{1}+a_{2}\right)}{a_{1} a_{2}}}=\sqrt{\frac{2 \cdot 1000 \mathrm{~m} \cdot(7.9365+6.867)^{\mathrm{m} / \mathrm{s}^{2}}}{(7.9365 \cdot 6.867)\left(\mathrm{m} / \mathrm{s}^{2}\right)^{2}}} \\
& T=23.31 \mathrm{sec}
\end{aligned}
$$

8)

$$
r=\left(x^{2}+y^{2}\right)^{1 / 2} \quad \begin{aligned}
x & =x_{0}=d \quad(\text { wotcecen } x) \\
& y=y_{0}+v_{0 y} t+\frac{1}{2} a t^{2} \\
& =h-\frac{1}{2} g t^{2}
\end{aligned}
$$

$$
\therefore \quad r=\left[d^{2}+\left(h-\frac{1}{2} g t^{2}\right)^{2}\right]^{1 / 2}
$$

\rangle and, wher BALC hits ground

$$
\frac{d n}{d t}=\frac{-\left(h-\frac{1}{2} g t^{2}\right) g t}{\left[d^{2}+\left(h-\frac{1}{2} g t^{2}\right)^{2}\right]^{1 / 2}}
$$

$$
\begin{aligned}
& y=0 \\
& t=\sqrt{\frac{24}{g}}
\end{aligned}
$$

$$
\begin{gathered}
\left.\frac{d r}{d t}\right|_{t=\sqrt{\frac{2 h}{g}}}=\frac{-\left(h-\frac{1}{2} g \cdot\left(\frac{2 h}{g}\right)\right) g \sqrt{\frac{2 h}{g}}}{\left[d^{2}+\left(h-\frac{1}{2} g \cdot \frac{2 h}{g}\right)^{2}\right]^{\frac{1}{2}}}=0 \\
\left.\frac{d r}{d t}\right|_{t=\sqrt{\frac{2 h}{g}}}=0
\end{gathered}
$$

$\theta=\operatorname{Arctan}\left(\frac{y}{x}\right)=\operatorname{Arctan}\left(\frac{h-\frac{1}{2} g t^{2}}{d}\right)$
$\omega=\frac{d \theta}{d t}=\frac{1}{1+\left(\frac{h-\frac{1}{2} g t^{2}}{d}\right)^{2}} \cdot\left(-\frac{g t}{d}\right)$

$$
\omega\left(t=\sqrt{\frac{2 h}{g}}\right)=-\frac{\sqrt{2 g h}}{d}
$$

9) $K \notin K 1.25$

$$
\begin{aligned}
& \theta=\frac{1}{2} \alpha t^{2} \\
& \dot{\theta}=\alpha t \\
& \ddot{\theta}=\alpha
\end{aligned}
$$

$$
r=\frac{\theta}{\pi}=\frac{\alpha t^{2}}{2 \pi}
$$

$$
\dot{r}=\frac{\alpha t}{\pi}
$$

$$
\ddot{r}=\alpha / \pi
$$

$$
\begin{aligned}
& \vec{V}=\dot{r} \hat{r}+r \dot{\theta} \hat{\theta}=\frac{\alpha t}{\pi} \hat{r}+\frac{\alpha^{2} t^{3}}{2 \pi} \hat{\theta} \\
& \vec{a}=\left[\ddot{r}-r \dot{\theta}^{2}\right] \hat{r}+[r \ddot{\theta}+2 \dot{r} \dot{\theta}] \hat{\theta}=\left[\frac{\alpha}{\pi}-\frac{\alpha^{3} t^{4}}{2 \pi}\right] \hat{r}+\left[\frac{5 \alpha^{2} t^{2}}{2 \pi}\right] \hat{\theta}
\end{aligned}
$$

a) See ATHMED SKETZM.
b) $\theta=\frac{1}{2} \alpha t^{2}=\frac{1}{\sqrt{2}} ; \quad t^{2}=\frac{\sqrt{2}}{\alpha}, \quad t^{4}=\frac{2}{\alpha^{2}}$
RADH RLCCCNATRON $\left(\sec\right.$ trove) $=\frac{\alpha}{\pi}-\frac{\alpha^{3} t^{4}}{2 \pi}=\frac{\alpha}{\pi}-\frac{\alpha^{3}}{2 \pi} \cdot \frac{2}{\alpha^{2}}=0$
c) Radir \# Trwanare racecurnous hre Equte mtanitader when Either

$$
\frac{\alpha}{\pi}-\frac{\alpha^{3} t^{4}}{2 \pi}=\frac{5 \alpha^{2} t^{2}}{2 \pi} \text { (o) } \frac{\alpha^{3} t^{4}}{2 \pi}-\frac{\alpha}{\pi}=\frac{5 \alpha^{2} t^{2}}{2 \pi}
$$

Now $\theta=\frac{1}{2} \alpha t^{2} ; \quad t^{2}=2 \theta / \alpha$
so $\quad \frac{\alpha}{\pi}\left(1-2 \theta^{2}\right)=\frac{\alpha}{\pi} \cdot 5 \theta \quad \frac{\alpha}{\pi}\left(2 \theta^{2}-1\right)=\frac{\alpha}{\pi} \cdot 5 \theta$

$$
\theta=\frac{-5 \pm \sqrt{25+8}}{4} \quad \theta=\frac{5 \pm \sqrt{25+8}}{4}
$$

$\theta>0$, So oncy wees posinve root

$$
\theta=0.186 \mathrm{rad}=10.66^{\circ} \quad \theta=2.686 \mathrm{rad}=153.90^{\circ}
$$

10) K\&K Proscen 1.27

Symmemic pertreds roof, subteadink riapt pace.
STmising a Distince h selow the Pett, with whit iwinin spees musi ble be Thnown so That it Just clears the Perk And HITS The othen side of THE roof at The stme Heantr?

Wire Down kivemanc EQuanous in chatesith cooldiuntes
For unifonm Accecention $\vec{a}=-g \hat{y}$:

$$
\begin{aligned}
& x=x_{0}+V_{0 x} t \\
& V_{x}=V_{0 x} \\
& y=y_{0}+V_{0 y} t-\frac{1}{2} g t^{2} \\
& V_{y}=V_{0 y}-g t
\end{aligned}
$$

(i) $x-x_{0}=h=v_{0 x} t$
(ii) $V_{x}=V_{o x}$
(iii) $y-y_{0}=h=V_{o y} t-\frac{1}{2} g t^{2}$
 3 anknowns $V_{0 x}, V_{o y}, t$
(iv) $V_{y}=0=V_{0 y}-g t$
\Rightarrow EUMONTE t wiTh (iv) $t=V_{0} / g$
$\Rightarrow P_{\text {ung Into (i) }} \quad h=\frac{V_{\text {ox }} V_{\text {oy }}}{g}$
$\Rightarrow P_{\text {cug }}$ ind (iii) $h=\frac{V_{0 y}^{2}}{g}-\frac{1}{2} \frac{V_{0 y}^{2}}{g}=\frac{1}{2} \frac{V_{0 y}^{2}}{g} ; V_{0 y}=\sqrt{2 g h}$

$$
V_{0 x}=\frac{g h}{V_{0 y}}=\sqrt{\frac{g h}{2}}
$$

Ininn speed $V_{0}=\sqrt{V_{0 x}^{2}+V_{0 y}^{2}}=\sqrt{\frac{g h}{2}+2 g h}$

$$
V_{0}=\sqrt{\frac{5}{2} g h}
$$

[^0]: ${ }^{1} K \mathcal{Z} K \equiv$ Kleppner and Kolenkow, An Introduction to Mechanics

