7.41 Leaning plank

As long as the plank is in contact with the wall, the coordinates of its center of mass are

$$
x=L \cos \theta \quad y=L \sin \theta
$$

$x^{2}+y^{2}=L^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=L^{2}$
Until contact with the wall is lost, the center of mass moves on a circular path of radius L, as indicated in the upper sketch.
Because the wall and floor are frictionless, the force F_{w} exerted by the wall on the plank and the force F_{f} exerted by the floor are normal to the surfaces, as shown in the lower sketch.
The plank loses contact with the wall when
$F_{w}=0$, or, equivalently, when $\ddot{x}=F_{w} / M=0$.

$x=L \cos \theta \quad \dot{x}=-L \sin \theta \dot{\theta}$
$\ddot{x}=-L \cos \theta \dot{\theta}^{2}-L \sin \theta \ddot{\theta}=0 \Longrightarrow \dot{\theta}^{2}=-\tan \theta \ddot{\theta}$
There are no dissipative forces, so mechanical energy E is conserved. Let y_{0} be the initial height of the center of mass above the floor.

$$
\begin{align*}
E_{i} & =M g y_{0}=E_{f}=M g y+\frac{1}{2} M(L \dot{\theta})^{2}+\frac{1}{2} I_{0} \dot{\theta}^{2} \\
M g y_{0} & =M g L \sin \theta+\frac{1}{2} M(L \dot{\theta})^{2}+\frac{1}{2}\left(\frac{1}{3} M L^{2}\right) \dot{\theta}^{2}=M g L \sin \theta+\frac{2}{3} M L^{2} \dot{\theta}^{2} \\
y_{0} & =L \sin \theta+\frac{2}{3} \frac{L^{2}}{g} \dot{\theta}^{2} \tag{2}
\end{align*}
$$

Differentiating Eq. (2),
$0=L \cos \theta \dot{\theta}+\frac{4}{3} \frac{L^{2}}{g} \dot{\theta} \ddot{\theta} \Longrightarrow \ddot{\theta}=-\frac{3}{4} \frac{g}{L} \cos \theta$
Using Eq. (1),
$\dot{\theta}^{2}=\frac{3}{4} \frac{g}{L} \sin \theta$
Substituting Eq. (3) in Eq. (2),
$y_{0}=L \sin \theta+\frac{1}{2} L \sin \theta=\frac{3}{2} L \sin \theta=\frac{3}{2} y$
so the plank loses contact with the wall at height

$$
y=\frac{2}{3} y_{0}
$$

