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The problem asks for the speed of the center of mass of the rod as a function
of θ. Since the question isn’t asking for a function of time or a parameter that
requires a time to find we should try and use conservation laws first. Let’s
consider the conservation of energy. Initially the rod is at rest, so the starting
energy is the following:
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When there is a central force, like gravity or coulomb force, acting on a solid
body you take the force to be acting on the center of mass. If the force of
gravity acts on the center of the rod then the gravitational energy is defined by
the height of the center of mass from the ground.

At a later point of time, when the rod is falling, the center of mass of the
rod gains a linear kinetic energy and the rod gains a rotational kinetic energy.
So the following is the energy of the rod while it is falling:
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y in (2) is the height of the center of mass of the rod. We can find a relation
between y and θ using trigonometry.
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We may now solve (3) for θ.
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In (2), ω is the rotational velocity of the rod. Since we have an expression
for θ we may take a derivative of (4) to find ω.
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We must figure out what ẏ is. Let’s consider conservation of momentum. In
the y direction we have the force of gravity acting on the rod, so momentum
isn’t conserved in this direction. However, there are no forces acting on the rod
in the x direction so momentum in the x direction must be conserved. Since the
rod was at rest at the beginning that means that there is no velocity in the x
direction. Thus, all velocity of the center of mass is in the y direction and so ẏ
is the speed of the center of mass. So we can rewrite (5) as the following:
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Now we need to find the moment of inertia I. We note from the previous
argument that the rod is essentially spinning about it’s center of mass. So the
moment of inertia is the same as the moment of inertia of a rod in your hand
out.

Irod =
1

12
mL2 (7)

Plugging (6) and (7) into (2) and simplifying gives the following expression
for velocity:
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Now we can use (3) to solve for y as a function of θ. Doing so, we obtain
the following:

y =
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Plugging (9) into (8) and simplifying gives us the speed of the center of mass
of the rod as a function of θ.
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