Physics 3210, Spring 2019

1. A *linear triatomic molecule* consists of a heavy atom M attached to two smaller atoms m via equal springs with constant k. Assume motion is only possible in one (x) direction. See the figure below.

- (a) Obtain three coupled equations of motion for the three atoms. Use these equations to show that the center-of-mass of the system will be unaccelerated.
- (b) There will be three normal modes of the triatomic molecule. These may be represented vectorially (x_1, x_2, X) as follows:

mode 1 :=
$$(1, 1, 1)$$

mode 2 := $(1, -1, 0)$
mode 3 := $(1, 1, -\xi)$

In mode 1, the center-of-mass moves with nonzero velocity. In modes 2 and 3, the center of mass is at rest. What is ξ ?

(c) Find the frequencies ω_1 , ω_2 and ω_3 associated with these three normal modes.