1. A mass m is free to slide one a frictionless table, and is connected by a string that passes through a hole in a table to a mass M hanging below the table. See the figure below. Assume that M can only move vertically, and that the string always remains taut.

(a) Use the Lagrangian method to find the equations of motion of the system, with r and θ (see figure) as generalized coordinates.
(b) Show that the angular momentum $L=m r^{2} \dot{\theta}$ of mass m is a constant of the motion. Find an expression for the radial acceleration \ddot{r} for a particular L.
(c) There is a particular radius r_{0}, for a given L, such that m will undergo uniform circular motion. What is this radius?
