Physics 3210 Spring 2019 Discussion \#11 Answers

Josh Peterson

February 13th 2019

From lecture we know we can parameterize \hat{r} with respect to x with the following equation:

$$
\begin{equation*}
\vec{r}=x \hat{x}+f(x) \hat{y} \tag{1}
\end{equation*}
$$

With this we may find what $d \hat{s}$ is by taking differentials of (1):

$$
\begin{equation*}
d \vec{s}=d x \hat{x}+d f(x) \hat{y} \tag{2}
\end{equation*}
$$

where:

$$
\begin{equation*}
d f(x)=\frac{d}{d x}(f(x)) d x \tag{3}
\end{equation*}
$$

In this problem we are given the following equation:

$$
\begin{equation*}
y^{2}=x \tag{4}
\end{equation*}
$$

The graph shows the solutions where y is positive, so we know that y is the following:

$$
\begin{equation*}
y=\sqrt{x} \tag{5}
\end{equation*}
$$

Plugging (5) into (3) gives us the following differential:

$$
\begin{equation*}
d y=\frac{1}{2 \sqrt{x}} d x \tag{6}
\end{equation*}
$$

Now plugging (6) into (2) gives the following:

$$
\begin{equation*}
d \vec{s}=d x \hat{x}+\frac{1}{2 \sqrt{x}} d x \hat{y} \tag{7}
\end{equation*}
$$

Now we should rewrite \vec{A} In terms of x. Plugging (5) into \vec{A} gives us the following:

$$
\begin{equation*}
\vec{A}=x^{2} \hat{x}+x \hat{y}+z^{2} \hat{z} \tag{8}
\end{equation*}
$$

Now we can find $\vec{A} \cdot d \vec{s}$:

$$
\begin{equation*}
\vec{A} \cdot d \vec{s}=x^{2} d x+\frac{\sqrt{x}}{2} d x \tag{9}
\end{equation*}
$$

Now let's integrate (9) over the interval $0<x<2$:

$$
\begin{aligned}
\int \vec{A} \cdot d \vec{s} & =\int_{0}^{2}\left(x^{2}+\frac{\sqrt{x}}{2}\right) d x \\
& =\left.\left(\frac{x^{3}}{3}+\frac{x^{\frac{3}{2}}}{3}\right)\right|_{0} ^{2} \\
& =\frac{8+2 \sqrt{2}}{3} \\
& \approx 3.609
\end{aligned}
$$

