1. The simple pendulum below consists of a massless string of length $L=20 \mathrm{~cm}$ attached to the ceiling at one end and to a pointlike bob of mass m at the other end. The bob is given an initial displacement of 10° to the right and an initial velocity of 0.5 meters/second to the left.

In class, we found that the general solution of the harmonic oscillator equation can be written as:

$$
\theta(t)=A \cos (\omega t+\phi)
$$

where A and ϕ are constants of integration. Use the initial conditions given above to find a particular solution to the equation of motion $\theta(t)$ in this case. Sketch $\theta(t)$ versus time.

