1. In class we reviewed Example 1.18 from the text: A bead moves with constant speed u along the spoke of a wheel, starting from the center of the wheel at $t=0$. The angular position of the spoke is given by $\theta=\omega t$, where ω is a constant.
We determined that the velocity of the bead (in polar coordinates) is given by:

$$
\vec{v}=u \hat{r}+u \omega t \hat{\theta}
$$

and the acceleration is given by

$$
\vec{a}=-u \omega^{2} t \hat{r}+2 u \omega \hat{\theta}
$$

Below is a sketch of the trajectory of the bead, for $u=1 \mathrm{~m} / \mathrm{s}$ and $\omega=\pi \mathrm{rad} / \mathrm{s}$. At the points marked by \bullet 's, calculate the x and y components of the bead's velocity and acceleration. Use these to draw arrows representing \vec{v} and \vec{a} on the figure.

